Reg. No.:				
	1			

Question Paper Code: 51396

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2014.

Third Semester

Electronics and Communication Engineering

EC 2204/EC 35/EC 1202 A/080290015/10144 EC 305 – SIGNALS AND SYSTEMS

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Sketch the following signals
 - (a) x(t) = 2t for all t
 - (b) x(n) = 2n 3, for all n
- 2. Given $x[n] = \{1,-4,3,1,5,2\}$. Represent x[n] in terms of weighted shifted impulse functions.
- 3. State the conditions for convergence of fourier series.
- 4. State any two properties of ROC of laplace transform X(s) of a signal x(t).
- 5. State the necessary and sufficient condition for an LTI continuous time system to be Causal.
- 6. Find the differential equation relating the input and output a CT system represented by $H(j\Omega) = \frac{4}{(j\Omega)^2 + 8j\Omega + 4}$.
- 7. What is an anti-aliasing filter?
- 8. State the multiplication property of DTFT.

- 9. Find the overall impulse response h(n) when two systems $h_1(n) = u(n)$ and $h_2(n) = \delta(n) + 2\delta(n-1)$ are in series.
- 10. Using Z-transform, check whether the following system is stable.

$$H(z) = \frac{z}{z - \frac{1}{2}} + \frac{2z}{z - 3}, \quad \frac{1}{2} < |z| < 3.$$

PART B - (5 × 16 = 80 marks)

- 11. (a) (i) Given $x(t) = \frac{1}{6}(t+2), -2 \le t \le 4$ = 0 otherwise Sketch (1) x(t) (2) x(t+1) (3) x(2t) (4) x(t/2). (8)
 - (ii) Determine whether the discrete time sequence

$$x[n] = \sin\left(\frac{3\pi}{7}n + \frac{\pi}{4}\right) + \cos\frac{\pi}{3}n$$
is periodic or not. (8)

(b) Check the following systems are linear, stable

$$y(t) = e^{x(t)} \tag{8}$$

(ii)
$$y(n) = x(n-1)$$
. (8)

12. (a) Find the fourier series coefficients of the signal shown below:

(b) Find the inverse laplace transform of $X(s) = \frac{1}{(s+5)(s-3)}$ for the ROCs

(i)
$$-5 < \text{Re}\{s\} < 3$$
 (8)

(ii)
$$\operatorname{Re}\{s\} > 3$$

13. (a) Using convolution integral, determine the response of a CTLTI system y(t) given input $x(t) = e^{-\alpha t}u(t)$ and impulse response $h(t) = e^{-\beta t}u(t)$, $|\alpha| < 1$, $|\beta| < 1$.

Or

(b) Find the frequency response of the system shown below:

14. (a) Using convolution property of DTFT, find the inverse DTFT of $X(e^{jw}) = \frac{1}{(1-\alpha e^{-jw})^2}, \ |\alpha| < 1.$

Or

- (b) Find the inverse Z-transform of $X(z) = \frac{z^2}{(z-0.5)(z-1)^2}$, |z| > 1.
- 15. (a) Find the convolution of sum of x[n] = r[n] and h[n] = u[n]. (16)

Or

- (b) A casual LTI system is described by $y[n] \frac{5}{6}y[n-1] + \frac{1}{6}y[n-2] = x[n]$ where x[n] is the input to the system h[n] is the impulse response of the system. Find
 - (i) System function H(z)
 - (ii) Impulse response h(n).